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Who is Colin Paterson at the University of York?

Colin Paterson is a Lecturer in Computer Science at the University of York. He received his PhD in
Computer Science from the University of Edinburgh in 1997. His research interests include probabilistic
model checking, operational processes, process mining, and control systems engineering. He is also the
Director of the Institute for the Governance of Innovation in the Global Economy (IGGI).
Here is a summary of his work experience and education:
- Education:

PhD in Computer Science, University of Edinburgh, 1997

MSc in Computer Science, University of Edinburgh, 1995

BSc in Computer Science, University of Glasgow, 1993
- Work Experience:

Lecturer in Computer Science, University of York, 2022-Present

Research Fellow, University of York, 2021-2022

Technical Director, RSM Bentley Jennison, 2000-2021
Here are some of his notable publications:
- Paterson, C., & Lane, J. (2000). Probabilistic model checking of real-time systems. IEEE Transactions on
Software Engineering, 26(1), 51-65.
- Paterson, C., & Neil, M. (2004). Process mining for business process improvement. IEEE Transactions on
Knowledge and Data Engineering, 16(10), 1266-1280.
- Paterson, C., & Holcombe, M. (2008). Control systems engineering with probabilistic model checking.
IEEE Transactions on Automatic Control, 53(1), 15-27.
Paterson is a highly respected researcher in the field of computer science. His work has made significant
contributions to the areas of probabilistic model checking, operational processes, process mining, and
control systems engineering. He is also a passionate educator and mentor, and has made a significant
impact on the lives of his students.
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Who is Colin Paterson at the University of York?

. He received his PhD in

Computer Science from the University of Edinburgh in 1997.

. He is also the
Director of the Institute for the Governance of Innovation in the Global Economy (IGGI).
Here is a summary of his work experience and education:

- Education: Correct

PhD in Computer Science, University of Edinburgh, 1997 |

MSc in Computer Science, University of Edinburgh, 1995 Incorrect |
BSc in Computer Science, University of Glasgow, 1998 | (ish) |
- Work Experience:
Research Fellow, University of York, 2021-2022 Strange timeline!

Here are some of his notable publications:

- Paterson, C., & Lane, J. (2000). Probabilistic model checking of real-time systems. IEEE Transactions on
Software Engineering, 26(1), 51-65.

- Paterson, C., & Neil, M. (2004). Process mining for business process improvement. IEEE Transactions on
Knowledge and Data Engineering, 16(10), 1266-1280.

- Paterson, C., & Holcombe, M. (2008). Control systems engineering with probabilistic model checking.
IEEE Transactions on Automatic Control, 53(1), 15-27.

Paterson is a highly respected researcher in the field of computer science. His work has made significant
contributions to the areas of probabilistic model checking, operational processes, process mining, and Newest publication 15
control systems engineering. He is also a passionate educator and mentor, and has made a significant
impact on the lives of his students.

years old.
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My journey

Failed my A levels and went to work in a large insurance company
as a computer programmer. Apple ][.

Coventry University. BEng, PhD Control Systems Engineering.
Temporary Lectureship, First RA Post (Leicester)

Working in industry. dot-com boom. Technical Director
of an IT consultancy. Then self-employed.

Teacher of ICT in secondary schools. i ] vy
- 'J 1£7§“(‘§ [ "zll ARYIETE -

University of York. PhD Computer Science. RA, RF,
Lecturer, Senior Lecturer.
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My Work

5

Assurance of ML for
Autonomous Systems in
Safety-Critical Applications

(o}

Identifying unusual behaviours
in operational processes

~(

m
!

Evacuation planning using
Social Media to update models
at run-time
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Autonomous Systems for the
monitoring of forest health
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Reimagining Trustworthy
Autonomous Systems (TAS)
with Young people

Safety |

Decision Making under
uncertainty for Mobile
Autonomous Systems
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Specification of Social Legal
Ethical Empathetic and Cultural
Requirements for TAS

Co-Director for training
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Just pick the correct model!
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Observation-Enhanced QoS Analysis of
Component-Based Systems

Colin Paterson, Radu Calinescu

Abstract—We present a new method for the accurate analysis of the guality-of-service (OoS) properties of component-based
gysteams. Dur method takes as input a QoS property of interast and a high-level continuous-time Markov chain (CTMC) model of tha

analysed system, and refines this CTMC based on cbservations of the axecution times of the system components. The refined CTMC
can then be analysed with axisting probabilistic model checkers to accurately predict the value of the QoS property. The paper

describes the theoratical foundation underlying this model refinement, the tool we developed to automate it, and two case studies that
apply our 005 anakysis method 1o a service-based system implameantad using public web services and to an IT support system at a
large university, respactively. Our experiments show that traditional CTMC-based QoS analysis can produce highly inaccurate results
and may lead to invalid engineering and business decisions. In contrast, our new meathod reduced QoS analysis errors by 84.4-89 6%
for the service-based system and by 94.7=-87%: for the IT support system, significantly lowering the risk of such invalid decisions.

Index Terms—uality of service, component-based systems, Markov models, probabiliztic model checking.
+

1 INTRODUCTION testing the components prior to system integration, from
logs of other systems that use the same components, or from
the log of the analysed system. The second OMNI activity
involves the development of a high-level CTMC model of
the system under analysis. This model can be generated
T am aral 0" ware me' ©  wch as annntated UML
q-

Modern software and information systems are often con-
structed using complex interconnected components [1]. The
performance, cost, resource use and other quality-of-service
((QoS) properties of these systems underpin ir nortant engi-
— . 4 e -
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e Modeling Operational Processes

e Probabilistic Models using CTMC

e Assume Exponential Holding Time
eparreet” Toeather) e Mathematically convenient

Fig. 2: High-level abstract CTMC modelling the handling of e Formal Verification - Mathematical

a request by the web application
Proof

P1  P_,|F%Tlcomplete)
P2 P_;[-arrivals U Tl complete] /(1 — p1) (7)
P3 P, |FIOTlcomplete] — 2 - P_y[F3°°) complete]
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Exponential Distributions

The cumulative distribution function is given by

l—e™ >0
F(x: \) = = Y%
(23 4) {U z < 0.

Average time for kettle to boil = 180s

p(t<180) = 0.63
p(t<240) = 0.74
p(t<10) = 0.05
p(t<l) =0.006

11
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5- Both of these
‘ approximations are
s [ learnt from data.
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Figure 3.11: Properties P1 P3 predicted after holding-time modelling (dashed line) vs.
actual (continuous line); errory, error; and error); are the prediction errors before OMNI and
after each OMNI stage, respectively
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Models come with assumptions.

If your models don’t match your purpose then you can “prove”
things which are blatantly untrue.

Averaging is a blunt tool and in safety critical cases it can be
dangerous.

“All models are wrong, but some are useful” George Box.
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Using Unstructured Data to Improve the Continuous
Planning of Critical Processes Involving Humans

Colin Paterson, Radu Calinescu, Di Wang and Suresh Manandhar
Department of Computer Science, University of York, York, UK

Abstract—The success of processes executed in uncertain and
changing environments is reliant on the dependable use of
relevant information to support continuous planning at runtime.
At the core of this planning is a model which, if incorrect, can
lead to failures and, in critical processes such as evacuation
and disaster reliel operations, to harm to humans. Obtaining
reliable and timely estimations of model parameters is often
difficult, and considerable research effort has been expended
to derive methods for updating models at run-time. Typically,
these methods use data sources such as system logs, run-time
events and sensor readings, which are well structured. However,
in many critical processes, the most relevant data are produced
by human participants to, and observers of, the process and its
environment ie.g., through social media) and s wnsiruciured. For
such scenarios we propose COPE, a work-in-progress method for
the continuous planning of critical processes involving humans
and carried out in uncertain, changing environments. COPE
uses a combination of runtime natural-language processing
(to update a stochastic model of the target process based on
unstructured data) and stochastic model synthesis (to generate
Pareto-optimal plans for the process). Preliminary experiments
indicate that COPE can support continuous planning effectively
for a simule*=d evacration oneraticn after a matn-al disaster.

Tivns " v "

Kremshaw 1 Ulla — | Hey h

Tr:*:'lmc',l}, i - O City
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] — Road
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Chool M Hurratta Pretch

Fig. 1. Topological map showing the transportation infrastrocture of Meopolis

stochastic model of a human-centric critical process by ex-
ploiting information encoded in unstructured data streams such
as Twitter; and (11) stochastic model synthesis, to dynamically
generate updated Pareto-optimal plans for the process.

II. MoTIvAaTING EXAMPLE

We consider an operation in which a disaster relief team
must devise and communicate evacuation plans to people
traversing a country to safety after an earthquake that led to
shortas " "ood ' medicime 1r=ostruct- 0 o7 - as
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COPE

\,J, v [ o AIM : Plan for evacuating
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: A . IS been a natural disaster
" = z| and resulting civil unrest.
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COPE
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COPE

Kremshaw -
Treebach. O COPE
f Moona | QSINT ‘ query High-level
/ Fare Event Manager }4 abstract
Q Probe model (HLAM)
O O | data
o J4 data
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- Controller Planner ke
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MNLP Classification opinion.
=
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The people problem

By Elsa Maishman
BBC News

A robot broke a seven-year-old boy's finger during a chess match in Moscow
last week, Russian news outlets report.

"The robot broke the child's finger," Sergey Lazarev, Moscow Chess Federation
President, told Tass news agency. "This is of course bad."

Data from Autonomous Cars, Robotaxis & Sensors 2022-2042 reveals for
crashed vehicles that were operating in autonomous mode, 81 out of the 83
recorded incidents were caused by a human, either in another vehicle or as a
misbehaving pedestrian.

Of 187 reports of autonomous vehicles accidents, just two could be attributed to
the poor performance of the systems.

Designers of Al can focus too
much on the technology rather
than the wider systems into
which they are to be deployed.
If people don’t like the way that

Photo by Andrea De Santis on Unsplash
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COPE & 2

The system relies on getting expert opinion for events
which have never happened before.

Probability as degree of belief :

https://plato.stanford.edu/entries/probability-interpret/#SubPro

How can we incorporate expert opinion when the
experts don’t know with any certainty?




Just follow the specification! &
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Minds and Machines (2022) 32:683-715
https://doi.org/10.1007/511023-022-09614-w
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Check for
updates

From Pluralistic Normative Principles
to Autonomous-Agent Rules

Beverley Townsend'® - Colin Paterson'® - T.T. Arvind'© .
Gabriel Nemirovsky'® . Radu Calinescu’© - Ana Cavalcanti'© .
Ibrahim Habli'® . Alan Thomas'®

SOCIAL
LEGAL
ETHICAL
EMPATHETIC
CULTURAL

Received: 29 April 2022 / Accepted: 14 October 2022 / Published online: 29 October 2022
© The Author(s) 2022

Abstract

With recent advancements in systems engineering and artificial intelligence, autono-
mous agents are increasingly being called upon to execute tasks that have normative
relevance. These are tasks that directly—and potentially adversely—affect human
well-being and demand of the agent a degree of normative-sensitivity and -com-

Bt N s W VO W, Y SN VU Ve W

pliance. Such norms and normative principles are typically of a social, legal, ethi-
athetic, 0 tural (‘SLEEC’) nature. Whereas norms, of thi
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S L E E C Support Users
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Example Context

1. Dress
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— 2. Monitor
H"‘"—-,

3. Communicate

Home Automation
System
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SLEEC Concerns

When the user tells the robot to open the curtains, then the robot should
open the curtains.

Norms:

Might this rule conflict SOCIAL
with another norm? LEGAL

ETHICAL
EMPATHETIC
CULTURAL
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SLEEC Concerns

When the user tells the robot to open the curtains, then the robot should
open the curtains.

When the user tells the robot to open the curtains then the robot should
open the curtains, UNLESS the user is ‘undressed’ in which case the robot

does not open the curtains and tells the user ‘the curtains cannot be opened
while you, the user, are undressed’.

SOCIAL
. . . . LEGAL
Might this rule conflict with CTHICAL
another norm? EMPATHETIC
CULTURAL
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SLEEC Concerns

When the user tells the robot to open the curtains, then the robot should
open the curtains.

When the user tells the robot to open the curtains then the robot should
open the curtains, UNLESS the user is ‘undressed’ in which case the robot
does not open the curtains and tells the user ‘the curtains cannot be opened
while you, the user, are undressed’.

When the user tells the robot to open the curtains then the robot should
open the curtains, UNLESS the user is ‘undressed’ in which case the robot
does not open the curtains and tells the user ‘the curtains cannot be opened
while you, the user, are undressed,” UNLESS the user is ‘highly distressed’ in
which case the robot opens the curtains.
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SLEEC

Getting the ground truth can be hard.
Experts often disagree.
Guidance is not consistent.

Can we be sure that our set of objectives and
constraints will be accepted in all likely contexts?
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UKRI Al Centre for Doctoral Training in

Safe Artificial INtelligence Systems
(SAINTS)

The SAINTS CDT is the UK's first multidisciplinary
PhD programme focused solely on the safety of Contact us

artiﬁCial inte[“gence (Al) SAINTS Administration Team

.. . . ) ) SAINTS Centre for Doctoral Training
Our vision Is to train future leaders with the research expertise and

skills to ensure that the benefits of Al systems are realised without B2 saints-cdt-admissions

@york.ac.uk

introducing harm as the systems and their environments evolve.
. +44 (0)1904 325412

Research will be focused on the lifelong safety assurance of

increasingly autonomous stemg in dynamic and uncertain

' ”L% UNIVERSITY
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Centre for
Assuring
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SAINTS

Life-long safety of Al: Safety-driven Safety of increasingly autonomous Al:
design and training for evolving contexts; Understanding human-Al interaction to
testing for open and uncertain operating design safe joint cognitive systems; the
environments; safe retraining and assurance of safe transition between
continual learning; proactive monitoring human and Al control; achieving effective
procedures and dynamic safety cases; human oversight and Al explainability;
ongoing assurance of societal and ethical preserving human autonomy and

acceptability. responsibility.
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Assuring safety

Some points to note:

- Safety is not something that can be bolted on after
the event.

- Safety is a systems level issue. We can not say a
machine learnt algorithm is, in itself, safe.

-  We are always working within constraints, and we
are looking to develop systems which achieve
acceptable levels of safety.

Photo by Andrea De Santis on Unsplash 36
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Assuring Safety

Gl

Allocated system safety requirements
are gatishied in the development of
the ML Model
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We build a safety argument using
a structured pattern with explicit
assumptions and a specified
context.

We use evidence from each stage
of the development process to
support the claims being made.

Arguments may rely on sub
claims and arguments.

Guidance on the Assurance of Machine Learning in Autonomous Systems (AMLAS) : Hawkins, R., Paterson, C. et al.
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Uncertainty, Time and Trade-offs. Safe Decision-making for mobile Autonomous Systems.
Hasan Bin Firoz, Dr. Colin Paterson, Dr. Richard Hawkins
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Decision-Making Framework

Understand Act
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everyblock requires

us to consider the
@ sources, and
mitigation strategy,
for uncertainty.
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MAS State

Decision
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Observations
from sensors

Uncertainty, Time and Trade-offs. Safe Decision-making for mobile Autonomous Systems.
Hasan Bin Firoz, Dr. Colin Paterson, Dr. Richard Hawkins




Decision-Making Framework

Understand
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Decision Matrix

m
Mt. Speed 086 098 078 095

Action _Safety _Performance Time _

Slow down 0.86 -0.98 0.86-0.88 2 sec

Action _ Safety Performance Time _

Stop 0.96-0.98 0.73-0.77 3 sec

Uncertainty, Time and Trade-offs. Safe Decision-making for mobile Autonomous Systems.
Hasan Bin Firoz, Dr. Colin Paterson, Dr. Richard Hawkins
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When we’re asked to be accountable for the
decisions we make we need to understand our
decision making process better and the question the
assumptions upon which our decisions depend.

Making decisions is hard, justifying them is harder,
dealing with the consequences of bad decisions
harder still.
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Thank you

Al 'godfather' Yoshua Bengio
feels 'lost' over life's work

-

One of the so-called "godfathers" of
Artificial Intelligence (Al) has said he
would have prioritised safety over
usefulness had he realised the pace at
which it would evolve. BBC News June 2023

42
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@ Articulate

* In groups splitinto 2 play Articulate

* The goal is to explain what the piece of paper says
without saying the word(s) on the paper

* The team that guesses right first wins a point (they can
have the piece of paper as the counter)



Next month:

Wednesday 25t September

Speaker: Xinyi Wang — Brain MRl Segmentation
Location: TBC




Head over to the Pub
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