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Learning for animal behaviour

Richard Mann, School of Mathematics



Supervised learning




What is active learning?

~ Bayesian optimisation



What Is active learning?

 Where to look
next...

 \What to do next...



What is active learning?

Each shot:

 Potential hit
e Learn

Winners don’t fire randomly!



What Is active learning?
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Why active learning?

» Labels are expensive
* Mimics reality
* Too much data!



Active learning with utility

Utility:

 Win/lose
o # of hits




L ookahead

Unlike the simple greedy one-step lookahead policy,
two- and more-step lookahead leads to nontrivial
choices. Let 0 2 €, and consider two evaluations.
Which point should we choose first?

e one-step: ¢ + 0
@ two-step: 2 + (1 —€)d
e difference:
e(1—46)>0

Choosing the low-probability node is always better!
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What does a slime mould want?
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Retroactive learning



Retroactive learning

Active learning:
where should | look?



Retroactive learning

Active learning:
where should | look?

Retroactive learning:
where should | have looked?
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fly home this way

Meade et al: ‘Homing pigeons
develop local route stereotypy’

Proc. Roy. Soc. B 2005
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It's @ compression algorithm

Where should | look?
- how best to learn

Where should | have looked
- how best to store




It's a compression algorithm

Where should | look?
- how best to learn

Where should | have looked
- how best to store

Brains are costly!



£20 £15



Learning together:
Bees, termites,
ants...




Single bee
chooses best
option




Many bees
divide their
efforts
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m Introduction

A PhD gives you lots of skills that are very valuable in industry

But for jobs involving programming, there are lots of things that it doesn’t
teach you

In academia and industry, code is written in very different ways, for very
different reasons

e Academia has an emphasis on experimentation and being able to change
things quickly

e Industry has an emphasis on building robust systems, and more close
collaboration on codebases

~ fuzzy labs



m Introduction

In this talk:

I'l1l talk about the transition from academia to industry
The ways that it’'s made me grow as a programmer
The tools and systems that I've learnt
Which ones I wish I'd learnt about sooner:
o Which I think are useful in academia

o Which are worth getting experience with before moving to industry

~ fuzzy labs



m Who am I?

e PhD in machine learning

O

O

Looking at memory in recurrent neural networks
Mostly theory, some experiments

e Postdocs in ensemble learning and explainability

o

A mix of applied and theoretical research

e« Now an MLOps engineer at Fuzzy Labs

o

O

Manchester based MLOps start-up/consultancy

Deploying production-ready machine learning
systems

Some very applied research, mostly engineering

MANCHESTER

1824

The University of Manchester

~ fuzzy labs

~ fuzzy labs



£ Moving to Industry

e How easy/hard it is to find a job is based on a lot
of factors outside of your control

But there are also a factors that you can control MANCHESTER

1824

o Give yourself plenty of time The University of Manchester
o Use your contacts

o Look for opportunities to add to your CV

e The first job out of academia will be the hardest to

get ~ fuzzy labs

e Be prepared to learn a lot of stuff very quickly

~ fuzzy labs



M Coding at Fuzzy Labs

e Projects tend to have 2-5 people working on them simultaneously

e A lot of projects involving building cloud-based machine learning
systems (a lot of LLMs!)

e Fuzzy Labs really care about code quality

e Like any tech company, knows long term success is dependent on
consistent quality

e We do a lot of stuff that is best practice, but my experience won't
be universal

~ fuzzy labs



B Tools and Systems

. Coding as a team activity
- Version control and code

review

&>

- Virtual Environments Pre-Commit

. Good code by default
- Pre-commit hooks
- Typing
- Testing

PC

. Finding problems quickly
- Debugging ~ fuzzy labs
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£ Version Control

All changes are tracked with
git/Github

Changes are done in separate
feature branches

Adds friction to small changes,
but allows for systematically

building larger systems

Pull Request Process

Main Branch

Current Version ]

Feature Branch

J

Y

[ Newer version J|

Y

Current Version

Y

New commit

Y

New commit

;

|
|
v

Version with new]

Merge updates

Y

A

feature J

Code reviews e —

~ fuzzy labs



¢ Virtual Environments

e« We want all engineers to be working with

the same versions of each library

e We have a shared configuration file

specifying what tools/libraries/settings

we want in the environment

e An automatically generated poetry.lock

file that the environment is built from

e This defines not just
explicit dependencies,

ones, 3rd order ones,

the versions of
but also 2nd order

etc

[tool.poetry]

name = "MindGPT"

version = "0.1.0"

description = ""

authors = ["Your Name <you@example.com>"]
license = "Apache-2.0 license"

readme = "README.md"

[tool.poetry.dependencies]

python = ">=3.10,<3.11" # ZenML requires <3.11
pandas = "1.5.2"

pandas-stubs = "72.0.2.230605" # required by mypy
requests-html = "*0.10.0"

xml = "A4.9.2"

types-beautifulsoup4 = ""4.12.0.5"

types-requests = "72.31.0.1"

types-urllib3 = "71.26.25.13"

transformers = ""4.30.2"

~ fuzzy labs
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Pre-Commit Hooks

e Pre-commit hooks do automatic code quality checks before letting you
commit your code
e They can check for
o Code formatting (whitespace, line length etc)
o Comments and docstrings
o Semantic errors
o Accidentally committing keys/passwords or large files
o Type errors
o Typos

e Setting up pre-commit hooks will instantly improve your code quality!

~ fuzzy labs



Pre-Commit Hooks

check toml

check yaml For minor and cosmetic

check json

mixed line ending issues, they will fix your

trim trailing whitespace

fix end of files code for you automatically

Fixing routers/utils.py

check for added large files
check for case conflicts

Fixed 2 errors:
- routers/utils.py:
1 x F401 (unused-import)
1 x 1001 (unsorted-imports)

Found 2 errors (2 fixed, 0 remaining).

~ fuzzy labs




Pre-Commit Hooks

check toml For issues which it can’t
check yaml

check json fix automatically, it will

mixed line ending

trim trailing whitespace fail and tell yOU hOW tO
fix end of files

check for added large files le lt

check for case conflicts

:5: D103 Missing docstring in public function

Found 1 error.

~ fuzzy labs



Pre-Commit Hooks

Histogram of Training Data By Class

SR The typo in this plot was missed by me, 3

120 - postive class

negative class co-authors and 4 reviewers

100 -

Adding pre-commit hooks to the repository
80 -

flagged it immediately
60 4

40

20 1

175 200 0 25 50 75 100 125 150 175 200
feature value

~ fuzzy labs



[CJ Typing

def query_llm(prediction_endpoint, messages, temperature, max_length):

"""Query endpoint to fetch the summary.

Args:
prediction_endpoint: Prediction endpoint.
messages: Dict of message containing prompt and context.
temperature: inference temperature
max_length: max response length in tokens

Returns:
Summarised text.

with e+ eninner("|l nadinn recennnce L I

~ fuzzy labs



[CJ Typing

def query_11lm(
prediction_endpoint: str,
messages: MessagesType,
temperature: float,
max_length: int,
) -> str:
"""Query endpoint to fetch the summary.

Args:
prediction_endpoint (str): Prediction endpoint.
messages (MessagesType): Dict of message containing prompt and context.
temperature (float): inference temperature
max_length (int): max response length in tokens

Returns:
str: Summarised text.

with st.sninner("loadina resnonse..."):

~ fuzzy labs



Advantages of Typing

e Makes explicit how different parts of your code are
expected to interact

e Allows you to read and understand code faster

e Lets your IDE give you better autocomplete options

e Spots lots of errors before runtime

But type-checking in Python is not perfect.. it can be really

annoying

. fuzzy labs



& Testing

Two kinds of tests:
— "B-iMt: Test behaviours of individual functions and classes

Cesijéay 0 B-inifit: Test the behaviour of the system as a whole

~ fuzzy labs



& Testing

Unit tests can check a lot of things about your code:

e Do given inputs give you the correct output

e Is your program in the correct state after a function
is called?

e Are the correct intermediate functions called, with
the correct arguments?

e Are functions called the correct number of times?

e Do functions attempt to access the correct external

resources (filesystems, URLs, databases, etc)

~ fuzzy labs



¢ Testing

def test_add_punctuation():

assert not add_punctuation("") Tests can be as Simple as

assert add_punctuation("Heading") == "Heading."

assert add_punctuation("Heading.") == "Heading." just testing that the
assert add_punctuation("Heading!") == "Heading!"

function output is what's

assert add_punctuation("Heading?") == "Heading?"

assert ( expected for a list of

add_punctuation("Heading;") == "Heading;."

inputs

~ fuzzy labs



& Testing

test_compute_embedding_drift_step():

mock_reference_embedding = [[1.1, 2.2, 3.3], [3.1, 4.1, 5.1]]
mock_current_embedding = [[1.1, 2.2, 3.3], [3.1, 4.1, 5.1]]

with patch(
"steps.data_embedding_steps.compute_embedding_drift_step.compute_embedding_drift_step.ChromaStore"

as mock_chroma, patch( Or they can become more

"steps.data_embedding_steps.compute_embedding_drift_step.compute_embedding_drift_step.requests.post"

as k t t tch 1 1

s mock_post_reavests, patend e e complex, especially if your
"steps.data_embedding_steps.compute_embedding_drift_step.compute_embedding_drift_step.COLLECTION_NAME_MAP"

as mock_collection_name_map: .

mock_chroma_instance = mock_chroma.return_value funCtlon Wants to Call

mock_chroma_instance.fetch_reference_and_current_embeddings.return_value = (

nock_reference_enbedding other systems/libraries

mock_current_embedding

mock_collection_name_map.return_value = {

"mock_collection_name": "mock_collection"

mock_post_requests.return_value.text = "OK"
distance = compute_embedding_drift(

collection_name:| "mock_collection_name" reference_data_version: "mock_version" current_data_version: | "mock_version"

isinstance(distance, float)
distance ==

~ fuzzy labs



& Testing

jef test_compute_embedding_drift_step():

mock_reference_embedding = [[1.1, 2.2, 3.3], [3.1, 4.1, 5.1]]
mock_current_embedding = [[1.1, 2.2, 3.3], [3.1, 4.1, 5.1]]

with patch(
"steps.data_embedding_steps.compute_embedding_drift_step.compute_embedding_drift_step.ChromaStore"

) as mock_chrona, pateh( Or they can become more

"steps.data_embedding_steps.compute_embedding_drift_step.compute_embedding_drift_step.requests.post"

) as mock_post_requests atch( 1 1
Mack post_reqUests, p e e ” complex, especially if your
steps.data_embedding_steps.compute_embedding_drift_step.compute_embedding_drift_step.COLLECTION_NAME_MAP

) as mock_collection_name_map:

mock_chroma_instance = mock_chroma.return_value funCtlon Wants to Call

mock_chroma_instance.fetch_reference_and_current_embeddings.return_value = (

nock_reference_enbedding other systems/libraries

mock_current_embedding

mock_collection_name_map.return_value = {

"mock_collection_name": "mock_collection"

You can patch out calls to

mock_post_requests.return_value.text = "OK"

external libraries, and

distance = compute_embedding_drift(

collection_name:| "mock_collection_name" reference_data_version: "mock_version" current_data_version: | "mock_version"

make mock versions of

~t isinstance(distance, float) COmpleX ObJeCtS

t distance ==

~ fuzzy labs
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£ Use an IDE

Using an IDE that you're comfortable with let’'s you work a lot more
effectively

Knowing the tools in the IDE will allow you to solve problems quicker

Also, being able navigate effectively reduces friction when working on
hard problems

Which IDE isn’t too important, but learning one well is

eclipse
m @ =  Kspyder

~ fuzzy labs



B¥ Debuggers

1 Erom sklearn.datasets import load_iris

2 f@om sklearn.model_selection import train_test_split
3 from sklearn.ensemble import RandomForestClassifier
4

5 # Load data

6 data = load_iris()

7

8 # split data into train and test splits

9 train_x, train_y, test_x, test_y = train_test_split( *arrays: data.data, data.target, test_size=0.2)
10

11 # Initialise model

12 model = RandomForestClassifier()

13

14 # Train model

15 model.fit(train_x, train_y)

16

17 # print model score

18 print(model.score(test_x, test_y))

~ fuzzy labs



Debuggers

# print model score
print(model.score(test_x, test_y))

scratch_5

/Users/dannywood/Library/Caches/pypoetry/virtualenvs/voronoi-generator-0Ajen9Ye-py3.10/bin/python /Usi

Traceback (most recent call last):
File " r nnyw Library/Application rt tBrains/PyCharm2024.1

model.fit(train_x, train_y)

return fit_method(estimator, *args, *xkwargs)
File " rs/dannywood/Library/Caches etry/virtualenvs/voronoi-generator-0Ajen9Ye- .10/11 4
X,
File
X,
File

raise ValueError(
ValueError: Found input variables with inconsistent numbers of samples: [120, 30]

~ fuzzy labs



B¥ Debuggers

6 gata = Loaa_iris\) gata: {‘'@ata’: array(lls.1, $.5, 1.4, U.ZJ,\n l
7
8 # split data into train and test splits " "
9 train_x, train_y, test_x, test_y = train_test_split( *arrays: data.data, dat Settlng breaprIntS IetS you Stop the COde
10 . .
s Iitiatise wove just before the place it crashes
12 model = RandomForestClassifier() model: RandomForestClassifier()
13
14 # Train model
del.fit(train_x, in_y) 1 I I
e You can then inspect all variables in memory
17 # print model score
18 print(model.score(test_x, test_y))

You can see the stack trace

Debug  @%scratch_5

G O > AL ¥ P O Z ' Threads & Variables ~ Console

MainThread v | Evaluate expression (&) or add a watch ({3%9) You Can even Write and exeCUte COde before
S e erner se a0 continuing the rest of the program

>
>
> 2 model = {RandomForestClassifier} RandomForestC
>
>
>

g test_x = {ndarray: (120,)}[00011202010111
E test_y = {ndarray: (30,)}[112221100102102
ain_x = {ndarray: (120, 4)} [[5.5 4.2 1.4 0.2], [4.6 ¢

> BB Special Variables

Switch frames from anvwhere ... 0\ fuzzy la bS



B¥ Debuggers

©' % i Threads & Variables  Console Setting breakpoints lets you stop the code
Evaluate expression (¥) or add a watch (f3%3) Just before the place |t CI’aSheS

= RandomForestClassifier = {ABCMeta} <class 'sklea

S data = {Bunch: 8} {'data": array([[5.1, 3.5, 1.4, 0.2] \ _ . .

£ model = {RandomForestClassifier} RandomForestC You can then InSpeCt all variables In memory
S test_x = {ndarray: (120,)}[00011202010111

S test_y = {ndarray: (30,)}[112221100102102

= trainx - incarray (120 4)) (5.5 4.2 14 021 (46 .  YOU can see the stack trace

S frain

train_y = {ndarray: (30, 4

VOV VYV VYV

[6.22.94.31.3],[5.73
58 Special Variables You can even write and execute code before
continuing the rest of the program

v

~ fuzzy labs



B¥ Debuggers

O’ 2 . Threads & Variables  Console

Evaluate expression (¥) or add a watch (f3%3)

= RandomForestClassifier = {ABCMeta} <class 'sklea
S data = {Bunch: 8} {'data": array([[5.1, 3.5, 1.4, 0.2] \
S model = {RandomForestClassifier} RandomForestC
S test_x = {ndarray: (120,)}[00011202010111
S test_y = {ndarray: (30,)}[112221100102102
= train ndarray: (120, 4)} [[5.54.21.4 0.2], [4.6 ¢
train_y = {ndarray: (30, 4)}1[6.2 2.9 4.3 1.3], [5.7 3
88 Special Variables

VOV VYV VYV

v

Even outside an IDE, you can add

breakpoints to your code with a single line of

code:
breakpoint()

No imports required!

There are also command line debugging

tools that can be very useful

~ fuzzy labs
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3 Github Actions

There are lots of things you need to do regularly:

e Install updates
e Run tests
e Scan for vulnerabilities

e Push your code to run in production
Github lets you automate all of these.
If you can put it in a bash script, Github can run it!

Actions can run on a fixed schedule, whenever there’s

an update, or can be triggered manually

~ fuzzy labs



3 Github Actions

Building the right actions can save you lots of time

and effort!

<> Code 19 Pullrequests () Actions
Actions New workflow
All workflows

Application Tests

AWS Terragrunt apply

AWS Terragrunt destroy

AWS Terragrunt plan

Cl - Example Datapipeline

Cl - pre-commit

Push all service Docker Image to AW...
Push datapipeline Docker Image to ...
Push Docker Image to AWS ECR

Scan Python Dependencies

(3 Projects [ Wiki () Security |~ Insights 3 Settings
AWS Terragrunt apply
tg_apply.yml

® Help us improve GitHub Actions

Q Filter workflow runs

Tell us how to make GitHub Actions work better for you with three quick questions.

6 workflow runs

This workflow has a workflow_dispatch event trigger.

@ Provisioning resources
AWS Terragrunt apply #6: Manually run by EchoStatements

@ Provisioning resources

Event ~ Status ~

Use workflow from

develop Branch: develop *
Run workflow
develop

Give feedback X

Actor =

Run workflow ~

Branch ~

~ fuzzy labs
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> What I'd recommend

Start now

. Use version control
« Pre-commit hooks are great
« Use a unique virtual environment for each project

. Use a debugger
What you'll need to know inindustry

. Using Github collaboratively (PRs, merging branches,
squashing commits)

« Unit tests . fuzzy labs
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5 Resources

1Y réBCey © m

https://docs.github.com/en/actions/quickstart

FO1YBs

https://python-poetry.org/docs/basic-usage/

https://www.youtube.com/watch?v=Ji2XDxmXSOM

FBiae0 = "W

https://medium.com/@anton-k./how-to-set-up-pre-commit-hooks-with-python-2b512296436

Some recommendations for hooks to try: black, ruff, mypy (for typing)
FbQ a0 BWierwwie

https://www.youtube.com/watch?v=j@Wz_uBaDmo

~ fuzzy labs


https://docs.github.com/en/actions/quickstart
https://python-poetry.org/docs/basic-usage/
https://www.youtube.com/watch?v=Ji2XDxmXSOM
https://medium.com/@anton-k./how-to-set-up-pre-commit-hooks-with-python-2b512290436
https://www.youtube.com/watch?v=j0Wz_uBaDmo

Next month:

Wednesday 31t July

Dr Nicola Dinsdale (University of Oxford)
Domain Adaptation
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