
26th June 2024
Bragg Building (GR.25)

16.00 – 18:00
Guest Speakers
Richard Mann & Danny Wood
From Animal Insights to Industry Heights:
Active Learning & Engineering ML at Scale

AI
2

Time Topic

16:00
Dr R Mann
Active & Retro-Active Learning in Animal Behaviour

16:50 Pizza

17:10
Dr D Wood
From Academia to Industry: Software Engineering for
Machine Learning at Scale

18:00 Pub?

Today’s schedule

Dr Richard Mann

Active

Retroactive

Richard Mann, School of Mathematics

&

Learning for animal behaviour

Supervised learning

X1, X2, X3, …

X1, Y1, X2, Y2, X3, Y3 …

What is active learning?
What is active learning?

~ Bayesian optimisation

What is active learning?

• Where to look

next…

• What to do next…

What is active learning?

What is active learning?

Each shot:

• Potential hit

• Learn

Winners don’t fire randomly!

What is active learning?

What is active learning?

X1, X2, X3, …

X4, Y4, X9, Y9, X36, Y36 …

X4, X9, X36 …

• Labels are expensive

• Mimics reality

• Too much data!

Why active learning?

What is active learning?

Utility:

• Win/lose

• # of hits

Active learning with utility

Unlike the simple greedy one-step lookahead policy,

two- and more-step lookahead leads to nontrivial

choices. Let δ ≥ ε, and consider two evaluations.

Which point should we choose first?

What is active learning?
Lookahead

Choosing the low-probability node is always better!

Practical experiment

on a huge graph

CiteSeerx citation network

Targets: papers in NeurIPS

Garnett et al. Bayesian Optimal Active Search and Surveying, ICML 2012

What does a slime mould want?

Garnett et al., ICML 2012

Zabzina et al. PLoS Comp. Biol. 2014

Reid et al. J R Soc Interface 2016

Retroactive learning

It’s all about conjugation…

Retroactive learning

Active learning:

 where should I look?

Retroactive learning

Active learning:

 where should I look?

Retroactive learning:

 where should I have looked?

It’s all about conjugation…

This is a

pigeon

This is a

pigeon

Mr Grizzle

Mini GPS tracker

Mr Grizzle learns to
fly home this way

Meade et al: ‘Homing pigeons

develop local route stereotypy’

Proc. Roy. Soc. B 2005

What does

Mr Grizzle

remember?

Mann et al. Objectively
identifying landmark use
and predicting flight
trajectories of the homing
pigeon using Gaussian
processes
J R Soc Interface 2011

It’s a compression algorithm

Where should I look?

 - how best to learn

Where should I have looked

 - how best to store

It’s a compression algorithm

Where should I look?

 - how best to learn

Where should I have looked

 - how best to store

Brains are costly!

£20 £15

A B

Parallel active learning

Learning together:

Bees, termites,

ants…

Single bee

chooses best

option

Many bees

divide their

efforts

Pizza Time!

Dr Danny Wood

From Academia to Industry:
Software Engineering for Machine
Learning at Scale

 Introduction
A PhD gives you lots of skills that are very valuable in industry

But for jobs involving programming, there are lots of things that it doesn’t
teach you

In academia and industry, code is written in very different ways, for very
different reasons

● Academia has an emphasis on experimentation and being able to change
things quickly

● Industry has an emphasis on building robust systems, and more close
collaboration on codebases

 Introduction
In this talk:

● I’ll talk about the transition from academia to industry

● The ways that it’s made me grow as a programmer

● The tools and systems that I’ve learnt

● Which ones I wish I’d learnt about sooner:

○ Which I think are useful in academia

○ Which are worth getting experience with before moving to industry

 Who am I?

● PhD in machine learning
○ Looking at memory in recurrent neural networks
○ Mostly theory, some experiments

● Postdocs in ensemble learning and explainability
○ A mix of applied and theoretical research

● Now an MLOps engineer at Fuzzy Labs

○ Manchester based MLOps start-up/consultancy
○ Deploying production-ready machine learning

systems
○ Some very applied research, mostly engineering

 Moving to Industry

● How easy/hard it is to find a job is based on a lot
of factors outside of your control

● But there are also a factors that you can control
○ Look for opportunities to add to your CV
○ Give yourself plenty of time
○ Use your contacts

● The first job out of academia will be the hardest to
get

● Be prepared to learn a lot of stuff very quickly

 Coding at Fuzzy Labs
● Projects tend to have 2-5 people working on them simultaneously

● A lot of projects involving building cloud-based machine learning
systems (a lot of LLMs!)

● Fuzzy Labs really care about code quality

● Like any tech company, knows long term success is dependent on
consistent quality

● We do a lot of stuff that is best practice, but my experience won’t
be universal

 Tools and Systems
● Coding as a team activity

○ Version control and code

review

○ Virtual Environments

● Good code by default

○ Pre-commit hooks

○ Typing

○ Testing

● Finding problems quickly

○ Debugging

Coding as a
team activity

 Version Control
● All changes are tracked with

git/Github

● Changes are done in separate

feature branches

● Adds friction to small changes,

but allows for systematically

building larger systems

 Virtual Environments
● We want all engineers to be working with

the same versions of each library

● We have a shared configuration file

specifying what tools/libraries/settings

we want in the environment

● An automatically generated poetry.lock

file that the environment is built from

● This defines not just the versions of

explicit dependencies, but also 2nd order

ones, 3rd order ones, etc

Good Code by
Default

 Pre-Commit Hooks
● Pre-commit hooks do automatic code quality checks before letting you

commit your code

● They can check for

○ Code formatting (whitespace, line length etc)

○ Comments and docstrings

○ Semantic errors

○ Accidentally committing keys/passwords or large files

○ Type errors

○ Typos

● Setting up pre-commit hooks will instantly improve your code quality!

 Pre-Commit Hooks
For minor and cosmetic

issues, they will fix your

code for you automatically

 Pre-Commit Hooks
For issues which it can’t

fix automatically, it will

fail and tell you how to

fix it

 Pre-Commit Hooks

The typo in this plot was missed by me, 3

co-authors and 4 reviewers

Adding pre-commit hooks to the repository

flagged it immediately

 Typing

 Typing

 Advantages of Typing
● Makes explicit how different parts of your code are

expected to interact

● Allows you to read and understand code faster

● Lets your IDE give you better autocomplete options

● Spots lots of errors before runtime

But type-checking in Python is not perfect… it can be really

annoying

 Testing
Two kinds of tests:

Unit Tests: Test behaviours of individual functions and classes

Application Tests: Test the behaviour of the system as a whole

 Testing
Unit tests can check a lot of things about your code:

● Do given inputs give you the correct output

● Is your program in the correct state after a function

is called?

● Are the correct intermediate functions called, with

the correct arguments?

● Are functions called the correct number of times?

● Do functions attempt to access the correct external

resources (filesystems, URLs, databases, etc)

 Testing

Tests can be as simple as

just testing that the

function output is what’s

expected for a list of

inputs

 Testing

Or they can become more

complex, especially if your

function wants to call

other systems/libraries

 Testing

Or they can become more

complex, especially if your

function wants to call

other systems/libraries

You can patch out calls to

external libraries, and

make mock versions of

complex objects

Finding
Problems
Quickly

 Use an IDE

Using an IDE that you’re comfortable with let’s you work a lot more

effectively

Knowing the tools in the IDE will allow you to solve problems quicker

Also, being able navigate effectively reduces friction when working on

hard problems

Which IDE isn’t too important, but learning one well is

 Debuggers

 Debuggers

 Debuggers
Setting breakpoints lets you stop the code

just before the place it crashes

You can then inspect all variables in memory

You can see the stack trace

You can even write and execute code before

continuing the rest of the program

 Debuggers
Setting breakpoints lets you stop the code

just before the place it crashes

You can then inspect all variables in memory

You can see the stack trace

You can even write and execute code before

continuing the rest of the program

 Debuggers
Even outside an IDE, you can add

breakpoints to your code with a single line of

code:

breakpoint()

No imports required!

There are also command line debugging

tools that can be very useful

Automate the
Boring Stuff

 Github Actions
There are lots of things you need to do regularly:

● Install updates

● Run tests

● Scan for vulnerabilities

● Push your code to run in production

Github lets you automate all of these.

If you can put it in a bash script, Github can run it!

Actions can run on a fixed schedule, whenever there’s

an update, or can be triggered manually

 Github Actions
Building the right actions can save you lots of time

and effort!

Wrapping Up

 What I’d recommend
Start now

● Use version control

● Pre-commit hooks are great

● Use a unique virtual environment for each project

● Use a debugger

What you’ll need to know in industry

● Using Github collaboratively (PRs, merging branches,

squashing commits)

● Unit tests

Thank You

 Resources
lithub Actions:

https://docs.github.com/en/actions/quickstart

Poetry

https://python-poetry.org/docs/basic-usage/

https://www.youtube.com/watch?v=Ji2XDxmXSOM

Pre-commits

https://medium.com/@anton-k./how-to-set-up-pre-commit-hooks-with-python-2b512290436

Some recommendations for hooks to try: black, ruff, mypy (for typing)

PyCharm Webugger

https://www.youtube.com/watch?v=j0Wz_uBaDmo

https://docs.github.com/en/actions/quickstart
https://python-poetry.org/docs/basic-usage/
https://www.youtube.com/watch?v=Ji2XDxmXSOM
https://medium.com/@anton-k./how-to-set-up-pre-commit-hooks-with-python-2b512290436
https://www.youtube.com/watch?v=j0Wz_uBaDmo

Next month:

Wednesday 31th July

Dr Nicola Dinsdale (University of Oxford)

Domain Adaptation

Fancy more networking?

Head over to the pub!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72

